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A note on group velocity 

By G. B. WHITHAM 
Mathematics Department, Massachusetts Institute of Technology 

(Received 6 June 1960) 

The kinematic approach to group velocity given in Lighthill & Whitham (1955) 
for one-dimensional waves is extended to cover the general three-dimensional 
case. The ideas have particular bearing on the theory developed by Ursell(l960) 
for treating steady wave patterns on non-uniform steady fluid flows. 

Although this note was written in ignorance of the fact, all the main ideas 
presented here are implicit in 9966 and 67 of the book by Landau & Lifshitz 
(1959). However, these ideas do not seem to be well known to fluid dynamicists, 
and it was suggested to the author by the editor that a useful purpose would 
still be served by publishing this note as an expository article amplifying the 
paragraphs in Landau & Lifshitz. It also serves the original purpose of providing 
a supplement to Ursell’s paper. 

1. One-dimensional waves 
The following simple approach to group velocity for one-dimensional wave 

propagation is included as an example of ‘kinematic waves’ in Lighthill & 
Whitham (1955, p. 286). Let k(z ,  t ) ,  w ( z ,  t )  be the local wave number and fre- 
quency in the wave train and assume that as the train propagates the number of 
waves (number of crests, say) is conserved. Balancing the rate of increase 
(%/at) I3x of the number of waves in a fixed length I3x with the net flux - aw, 
this conservation law is expressed as 

ak aw 
at ax 
-+- = 0. 

If w is a known function of k,  usually deduced from assuming a uniform simple 
harmonic wave train locally, we have 

where 

ak ak 
- at +C(k)% = 0: 

dw 
dk 

C ( k )  = -. 

C(k)  is the ‘group velocity’ and equation (2) says that values of k are propagated 
with thelocal group velocity C(k)  even though theindividual crests propagate with 
the local phase velocity c = w / k .  It should be noted in particular that this result 
is not limited to a wave packet in which k remains close to some mean value k,. 

The results can be displayed in an (z , t )  diagram as shown in figure 1. The 
characteristic lines dx/d t  = C(k)  are shown non-overlapping. This is the situation, 
for example, in the gravity waves problem of the release of an initial elevation of 
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the water surface, after a suficient time has elupsed. Then the longer waves with 
larger group velocity are at the front of the wave; the leading characteristic 
would correspond to the maximum group velocity (g x depth)+ and would play 
the role of a wave front. For earlier times one can think of extending the charac- 
teristics in figure 1 backwards in time until they do overlap. Such a region of 
overlapping characteristics could be interpreted as the region in which the 
initial elevation, perhaps consisting of a single crest, is breaking down into a 
whole series of crests, and in this period the conservation equation (1) does not 
apply. This corresponds to the fact that in the exact solution of the problem by 
means of Fourier integrals, the simple description of the motion involving the 
group velocity is obtained only in the asymptotic behaviour limited to large t 
(see Jeffreys & Jeffreys 1956, $17.08). 

I X 

FIGURE 1. The full lines represent the characteristics dx/dt = C ( k )  and k is constant on 
each one. The broken lines represent the paths of individual wave crests dx/dt = c (k )  in 
the case 0 > c. 

However, a different kind of overlapping may occur where two distinct sets 
of waves are superposed; an example is when short capillary waves are superposed 
on gravity waves. Then the description by (1) applies to each set. A similar type of 
overlapping occurs in two and three dimensions when two wave systems cross at  
an angle; an example occurs in ship waves. In  either type it seems to be unneces- 
sary to rule out such overlapping solutions and introduce shocks as is necessary 
for the analogous simple waves of gas dynamics and the other examples of kine- 
matic waves given in the above reference. 

It should be remarked that when w ( k )  is determined by discussing the local 
propagation, the position x may be involved as a parameter so that w = W(k,  x). 
Then, in (1) we have 

(4) 
ak awak aw a@ awaw 
at ak ax ax at ak ax 
-+--+-=o and - + - - = o o .  

Therefore, w is constant along the characteristic curves dxldt = a W/ak = C,  
but k is not. 

2. Two and three dimensions 
The clearest derivation of the extension is to observe that (1) expresses the 

existence of a function $(x, t )  and a set of curves in the (2, t )  plane given by 
$(z, t )  = constant which can be recognized as waves. These curves could easily 
be defined in terms of the motion of ‘crests’ and ‘troughs’ provided none of 
these disappear. Then (1) follows with k = a$/ax and u = -a$/& which are of 
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course the correct quantities for wave-number and frequency in terms of q5. The 
function q5 is the 'phase function'. 

Now suppose that a set of wave surfaces $(x, t)  = constant can be recognized 
as waves in two or three dimensions. Then, defining the vector wave number 
k as Vq5 and the frequency w as - a$@, we have 

ak - + v w  = 0. 
at 

The phase velocity c is the velocity of the surface $(x, t )  = constant; it is in the 
normal direction, i.e. parallel to k, and its magnitude is -q5t/lV$l = w/k .  The 
existence of a scalar field $ corresponds to the assumption of wave conservation. 
Since k = V$, it follows that 

The irrotationality of k could also be the starting point in deducing the existence 
of q5. For, introducing k as the vector wave-number, conservation of waves re- 
quires the total number (with correct sign) crossing any closed curve be zero; 
hence 

and (6) follows. 

has been deduced by local arguments so that 

curl k = 0. (6) 

k.ds = 0 $ 
Again it is assumed that the dependence of w on k, and possibly on location x, 

w = W(k, X) (7) 

is known. Then, given appropriate initial or boundary conditions for k, equa- 
tions (5) and (7)  determine the vector field k from which the flow pattern given 
by $ can be calculated. Substituting for w in (6), we have three equations for the 
components ki of k 

where 

aki ahj 
- + C . - + &  = 0, 
at 9 axi 

The velocity Cj(k, x) = a Wpkj  is the three-dimensional group velocity. The 
interpretation of (8) is immediate when we note that k is irrotational so that 
akj/axi = aki/ax, and (8) can be rewritten 

The left-hand side is the rate of change of k, following a point moving with the 
group velocity C. In  principle, at least, this determines k at all future times and 
q5 is calculated from Vq5 = k. 

When the frequency w = W(k,x) is independent of x, 4 = 0 and (9) states 
that values of k, propagate unchanged in magnitude with the group velocity. 
But, in this case, C is a function of k only; therefore, the propagation is with 
constant velocity along straight lines. In  general the propagation velocity is 
different on the different lines, and the lines are not parallel. This is the general- 
ization of the one-dimensional result represented in figure 1. In  the (x, t )  space 
the characteristic curves dxldt = C are stri$ght lines. In  the special case of a 
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wave packet with k close to k, everywhere, the lines are parallel if we take the 
approximation C(k) = C(k,); this would be the ‘linear theory’. When W in- 
volves position x, k is no longer constant along the characteristic curves. How- 
ever, if the time does not appear explicitly in W ,  the frequency w is constant on 
characteristics. For, taking the scalar product of ( 5 )  with C, we have 

aw am -+c,- = 0, 
at ax, 

since Ci @ k i p )  = aw/at. 
Of course, one could equally well work with the original phase function 

#(x, t )  and write (7) as 

at 

But the standard methods of dealing with such equations introduce a#/at and 
a#/ax, as new variables and use the characteristic forms (9) and (10). Thus, 
there is no essential difference. Equation (1 1) has the same form as the Hamilton- 
Jacobi equation and the previous equation (9) is equivalent to 

dki aW dxi aW 
dt axi ’ dt ski' 

which are the corresponding Hamilton equations. The relation of wave motion to 
Hamilton’s equations is familiar in wave mechanics, but this approach has not 
been widely used to introduce the general treatment (not limited to a wave 
packet) of group velocity for classical waves. 

One important point is that the direction of the group velocity C will be the 
same as the phase velocity c (which in turn is parallel to k) if and only if w depends 
on the magnitude of k only and not on the direction of k. The first part is 
trivial: if w = f ( k )  where k = Ik(, then awlak, = f ’ ( k )  k-lk, and the result follows. 
For the second part, assume that 

- _ -  

Then, for i p j ,  

hence (13) 

for all i, j with i p j, and it follows that g is a function of k2 only. Then, integra- 
ting (12), we have that w is a function of k .  

3. Surface wave pattern on a non-uniform steady flow 
The theory developed by Ursell ( 1960) can be considered as a special case of the 

above ideas. In  a steady flow pattern the phase function # is independent of t 
and the frequency w is zero. If the known flow velocity is u(x) and if the phase 
velocity for local propagation relative to fluid a t  rest would be c,, then the resultant 
phase velocity c is the sum of C, and the component of u in the k direction, i.e. 

c = (u.k)k+c,, where k = k k .  
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Hence, the frequency is 
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w = c .k  = (u+c,).k = u . ~ + w , .  

For a steady pattern, therefore, 

(u+c,).k = 0. (14) 

Since u(x) and co(k,x) are assumed to be known, this is a functional relation 
between k, and k,. It is noted directly in Ursell’s paper as the condition that the 
wave crests remain steady in the flow. 

To this relation we simply add the irrotationality condition 

curl k = 0,  (15) 

and (14), (15) are the equations to determine the two components ( k l ,  k,) of the 
wave-number k. As Ursell finds, the characteristics of these equations are lines 
in the direction of the resultant of the stream velocity u and the group velocity 
aw,/ak,. This result clearly fits in with the more general treatment given here. 
Notice that in the time dependent problem, (15) plays a subsidiary role as an 
initial condition, since it then follows from (5) that curl k remains zero. However, 
for the steady wave pattern (15) becomes the basic conservation equation. 

The ‘ship wave ’ pattern, produced by a fixed disturbance in the stream, has 
two superimposed sets of waves in the wedge-shaped region behind the obstacle. 
This is an example of acceptable overlapping noted in 0 1. 

4. Variation of amplitude and energy propagation 
For a uniform medium in which component simple harmonic waves (constitu- 

ting the full disturbance) propagate without change in amplitude, energy propa- 
gates with the group velocity. Here, energy means the integral of the square of 
the amplitude over a region of space, and propagation with the group velocity 
means that if we consider the volume V(t )  enclosing a given set of points each 
moving with the appropriate group velocity, the energy in V does not change 
with time. A full derivation and discussion for one-dimensional waves is given in 
Jeffreys & Jeffreys (1956). The three-dimensional case goes through in complete 
analogy. The volume should contain several waves and in a given problem this 
result applies after a sufficiently large time; the time should be large enough for 
the Fourier integral over the harmonic components to be approximated by the 
first term in its asymptotic expansion for large t .  This is also the requirement for 
the kinematic properties of group velocity to apply. 

Thus we have the result 

amplitudecc (Z)& -O , (16) 

where A V  is a small volume which still contains several waves, AV, is its initial 
value and the amplitude is an average one for the waves in AV. For a uniform 
medium, the group velocity remains constant on lines of propagation and we 
have 
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provided the distance propagated is much greater than the diameter of AT! 
Expressions (16) and (17) give the typical amplitude factor which appears after 
applying the method of stationary phase to the Fourier integral. 

For a non-uniform medium we expect the energy to propagate with the group 
velocity in the same way, provided that typical length scales in the variation 
of the medium are large compared with typical wave lengths. This provides a 
simple approximate method for calculating amplitudes. Here energy means the 
physical energy which is related to the squares of velocity amplitude or pressure 
amplitude by factors which now depend on position. 
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